The set of interactive pages with the following structure:
Example of Computations $\mathbb{\implies}$ Your Experiments $\mathbb{\implies}$ Python Modules $\mathbb{\implies}$ Other Languages
Click the $\mathbb{activate}$ button below to display an interactive example.
@interact
def _(N=(9,1,-1)):
s1=r'<center><font color=%s size=5>'%'#3636ff'
s2=r'Derivatives till the %sth Order</font></center>'
var('x'); pretty_print(html(s1+s2%str(N)))
f,g=exp(x)*x,1/(x+1); F,G=[f],[g]
for i in range(N):
f=f.diff().factor(); g=g.diff().factor()
F.append(f); G.append(g)
p1=sum([plot(F[i],(-2,1),color=colormaps.jet(30*i)[:3],
legend_label=str(i)) for i in [0..N]])
p2=sum([plot(G[i],(0,3),color=colormaps.jet(30*i)[:3],
legend_label=str(i)) for i in [0..N]])
p1.show(title=r'$f=x \cdot e^x$',fontsize=12,
figsize=(4,5),gridlines=True)
p2.show(title=r'$f=\frac{1}{x+1}$',fontsize=12,
figsize=(4,5),gridlines=True,ymin=-20,ymax=20)
Type your own SageMath code lines below and click the $\mathbb{evaluate}$ button.
This code cell was evaluated automatically.