The set of interactive pages with the following structure:
Example of Computations
Click the
@interact
def _(n=[3,4,5,6]):
g=Graph({},loops=True,multiedges=True,sparse=True)
def add(g,x,y):
g.add_edges([(x,y,'a'),(x,y,'a'),(x,y,'b'),
(x,y,'b'),(x,y,'c'),(x,y,'c'),
(x,y,'d'),(x,y,'d'),(x,y,'e'),
(x,y,'e'),(x,y,'f'),(x,y,'f')])
[add(g,i,i+1) for i in [1..n-1]]
[add(g,i,i+5) for i in [1..n-1]]; add(g,n,1)
g.graphplot(vertex_size=0,vertex_labels=False,
color_by_label=True).show(figsize=(5,5))
Type your own SageMath code lines below and click the
xxxxxxxxxx
g=graphs.HoffmanSingletonGraph()
t=Graph()
t.add_edges(g.min_spanning_tree(
starting_vertex=0))
[t.set_edge_label(u,v,u) for u,v,l in t.edges()]
t.show(layout='tree',tree_root=0,
color_by_label=True,
vertex_size=0,figsize=(7,7))
This code cell was evaluated automatically.
xxxxxxxxxx
def _(N=[5,4,..,1]):
f1(x,y,z,t)=x^2+y^2-.5*z*t^2
f2(x,y,z,t)=x^2+y^2+.5*z*t^2
p1=sum([implicit_plot3d(
f1(x,y,z,i),(x,-i,i),(y,-i,i),(z,-2,2),
color=hue(sin(.24*i)),opacity=.7,
plot_points=5,frame=False) for i in [1..N]])
p2=sum([implicit_plot3d(
f2(x,y,z,i),(x,-i,i),(y,-i,i),(z,-1,0),
color=hue(sin(.24*i)),opacity=.3,
plot_points=5,frame=False) for i in [1..N]])
p3=plot3d(lambda x,y:0,(-N,N),(-N,N),
color='steelblue',opacity=.5)
(p1+p2+p3).show()
xxxxxxxxxx
def _(n=[4,5,..,8]):
f(u,v)=exp(-(u^n+v^n)/n)
s1(u,t)=(u,-.1*t,.1*t)
s2(v,t)=(v,-.1*t,.1*t)
pvf=sum([plot_vector_field(
f(u,v).gradient(),s1(u,i),s2(v,i),
color=hue(i/3)) for i in [1..3]])
pvf.show(figsize=(5,5),frame=False)
xxxxxxxxxx
import pylab,numpy
from mpl_toolkits.mplot3d import Axes3D
t=1.1; cq=numpy.arange(0,1,.13)
cq=numpy.concatenate((cq,numpy.repeat(cq,2)))
xq=[1,-1,1,-1,1,-1,1,-1]
yq=[1,1,-1,-1,1,1,-1,-1]
zq=[1,1,1,1,-1,-1,-1,-1]
f=pylab.figure(figsize=(7,7))
ax=f.add_subplot(111,projection='3d')
q=ax.quiver(8*[0],8*[0],8*[0],xq,yq,zq,
colors=pylab.cm.hsv(cq),lw=10,alpha=.5)
ax.set_xlabel(r'$\mathscr{X}$',fontsize=15)
ax.set_ylabel(r'$\mathscr{Y}$',fontsize=15)
ax.set_zlabel(r'$\mathscr{Z}$',fontsize=15)
ax.set_xlim(-t,t); ax.set_ylim(-t,t)
ax.set_zlim(-t,t); pylab.show()
xxxxxxxxxx
%%r
kmeans_clust<-kmeans(mtcars$wt,5); kmeans_clust
xxxxxxxxxx
%%html
<style>
.pressed {display:inline-block; padding:15px 15px;
outline:none; font-size:20px;
cursor:pointer; text-align:center;
color:#fff; background-color:#3636ff;
border:none; border-radius:10px;
box-shadow:0 5px slategray;}
.pressed:hover {background-color:#ff3636}
.pressed:active {background-color:#36ff36;
box-shadow:0 5px #aaa;
transform:translateY(5px);}
</style>
<button class='pressed'>$\mathbb{Pressed \; Effect}$
</button>