The set of interactive pages with the following structure:
Example of Computations $\mathbb{\implies}$ Your Experiments $\mathbb{\implies}$ Python Modules $\mathbb{\implies}$ Other Languages
Click the $\mathbb{activate}$ button below to display an interactive example.
@interact
def _(t=slider(.05,.95,.05,.05)):
def f(x): return -ln(x)
def g(x): return -ln(x)*x
var('x'); x_max=solve((-ln(x)*x).diff(),x)[0].rhs()
p=plot(f,(0,1),color='#3636ff',legend_label='y=-ln(x)')+\
plot(g,(0,1),color='#ff36ff',legend_label='y*x=-ln(x)*x')
pp=point((x_max,f(x_max)),color='#ff3636')+\
point((x_max,g(x_max)),color='#ff3636')
a=plot(f(x_max),(0,x_max),fill='axis',color='#ff3636',fillcolor='#ff3636')
an=text('-ln(x)*x='+str(g(x_max)),(x_max/2,f(x_max)+.2),color='#ff3636')
pt=point((t,f(t)),color='#3636ff')+point((t,g(t)),color='#ff36ff')
at=plot(f(t),(0,t),fill='axis',color='#3636ff',fillcolor='#3636ff')
ant=text('-ln(x)*x='+str(g(t).n()),(t+.1,f(t)+.2))
(p+pp+a+an+pt+at+ant).show(figsize=(7,4))
Type your own SageMath code lines below and click the $\mathbb{evaluate}$ button.
This code cell was evaluated automatically.
<script src='https://d3js.org/d3.v4.min.js'></script> was added in the page head.