$l: \ a * x + b * y + c = 0$
$\overrightarrow{n}\{a;b\} \perp l$
ΠΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ $(x_1;y_1), (x_2;y_2)$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$
Π‘ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ $k$ ΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ $(x_0;y_0)$$y - y_0 = k * (x - x_0)$
$k = tg \ \alpha$ - ΡΠ°Π½Π³Π΅Π½Ρ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΎΡΠΈ Ρ .$k = -\frac{a}{b} = \frac{y_2 - y_1}{x_2 - x_1}$
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅$\begin {cases} x = x_0 + p * t \\ y = y_0 + q * t \end {cases}, t \in \mathbb{R}$
ΠΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅$\frac{x - x_0}{p} = \frac{y - y_0}{q}$
$\overrightarrow{l}\{p;q\} \parallel l, \ M_0(x_0;y_0) \in l$
Π ΠΎΡΡΠ΅Π·ΠΊΠ°Ρ$\frac{x}{\alpha} + \frac{y}{\beta} = 1$
$\alpha = -\frac{c}{a}, \beta = -\frac{c}{b}$
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked Sage Cells
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked Python Cells
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked R Cells
$\begin {cases} l: a * x + b * y + c = 0 \\ M: (x_0;y_0) \end {cases} \to \rho(M,l) = \frac{|a * x_0 + b * y_0 + c|}{\sqrt{a^2 + b^2}}$
ΠΠ²Π΅ ΠΏΡΡΠΌΡΠ΅$\begin {cases} l_1: y = k_1 * x + m_1 = 0 \\ l_2: y = k_2 * x + m_2 = 0 \end {cases}$
$k_1 = k_2, m_1 = m_2 \implies l_1 \equiv l_2$
$k_1 = k_2, m_1 \neq m_2 \implies l_1 \parallel l_2$
$k_1 \neq k_2 \implies l_1 \cap l_2 = O$
$tg \ \varphi = \bigg|\frac{k_1 - k_2}{1 + k_1 \cdot k_2}\bigg|$
$k_1 \cdot k_2 = -1 \implies l_1 \perp l_2$
$l: \begin {cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end {cases}$
$\overrightarrow{n}\{a;b;c\} \perp l$
ΠΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ $(x_1;y_1;z_1), (x_2;y_2;z_2)$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅$\begin {cases} x = x_0 + p * t \\ y = y_0 + q * t \\ z = z_0 + r * t \end {cases}, t \in \mathbb{R}$
ΠΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅$\frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$
$\overrightarrow{l}\{p;q;r\} \parallel l, \ M_0(x_0;y_0;z_0) \in l$
$\Delta_x = \begin {vmatrix} q & r \\ y_1-y_0 & z_1-z_0 \end {vmatrix}, \ \Delta_y = \begin {vmatrix} p & r \\ x_1-x_0 & z_1-z_0 \end {vmatrix}, \ \Delta_z = \begin {vmatrix} p & q \\ x_1-x_0 & y_1-y_0 \end {vmatrix} \\ \rho(M,l) = \frac{\sqrt{\Delta_x^2 + \Delta_y^2 + \Delta_z^2}}{\sqrt{p^2 + q^2 + r^2}}$
ΠΠ²Π΅ ΠΏΡΡΠΌΡΠ΅$l_1: \frac{x - x_1}{p_1} = \frac{y - y_1}{q_1} = \frac{z - z_1}{r_1}$
$A_1(x_1;y_1;z_1) \in l_1, \ \overrightarrow{s_1}\{p_1;q_1;r_1\} \parallel l_1$
$l_2: \frac{x - x_2}{p_2} = \frac{y - y_2}{q_2} = \frac{z - z_2}{r_2}$
$A_2(x_2;y_2;z_2) \in l_2, \ \overrightarrow{s_2}\{p_2;q_2;r_2\} \parallel l_2$
$\overrightarrow{A_1A_2} = k_1 * \overrightarrow{s_1} = k_2 * \overrightarrow{s_2} \ (\overrightarrow{A_1A_2} \parallel \overrightarrow{s_1} \parallel \overrightarrow{s_2}) \implies l_1 \equiv l_2$
$\overrightarrow{A_1A_2} \neq k_1 * \overrightarrow{s_1} = k_2 * \overrightarrow{s_2} \ (\overrightarrow{A_1A_2} \nparallel \overrightarrow{s_1} \parallel \overrightarrow{s_2}) \implies l_1 \parallel l_2$
$\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end {vmatrix} = 0, \ \overrightarrow{s_1} \neq k * \overrightarrow{s_2} \implies l_1 \cap l_2 = O$
$\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end {vmatrix} \neq 0 \implies l_1, l_2 \notin \pi$
Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΊΡΠ΅ΡΠΈΠ²Π°ΡΡΠΈΠΌΠΈΡΡ ΠΏΡΡΠΌΡΠΌΠΈ$\Delta = \begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end {vmatrix}, \ \Delta_x = \begin {vmatrix} q_1 & r_1 \\ q_2 & r_2 \end {vmatrix}, \ \Delta_y = \begin {vmatrix} p_1 & r_1 \\ p_2 & r_2 \end {vmatrix}, \ \Delta_z = \begin {vmatrix} p_1 & q_1 \\ p_2 & q_2 \end {vmatrix}$
$\rho(l_1,l_2) = \frac{|\Delta|}{\sqrt{\Delta_x^2 + \Delta_y^2 + \Delta_z^2}}$
Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΡΠΌΡΠΌΠΈ ΡΠ°Π²Π½ΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΎΡ Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ$cos \angle (l_1, l_2) = \frac{p_1p_2 + q_1q_2 + r_1r_2}{\sqrt{p_1^2 + q_1^2 + r_1^2} \sqrt{p_2^2 + q_2^2 + r_2^2}}$