$\pi: \ a * x + b * y + c * z + d = 0$
$\overrightarrow{n}\{a;b;c\} \perp \pi$
ΠΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ $A_0(x_0;y_0;z_0)$ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Π°Ρ $\overrightarrow{n}\{a;b;c\}$$\pi: \ a * (x - x_0) + b * (y - y_0) + c * (z -z_0) = 0$
Π§Π΅ΡΠ΅Π· ΡΡΠΈ ΡΠΎΡΠΊΠΈ $A_1 (x_1;y_1;z_1), A_2 (x_2,y_2,z_2), A_3 (x_3,y_3,z_3)$$\begin {vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$
Π ΠΎΡΡΠ΅Π·ΠΊΠ°Ρ$\pi: \frac{x}{\alpha} + \frac{x}{\beta} + \frac{z}{\gamma} = 1$
$\alpha = -\frac{d}{a}, \ \beta = -\frac{d}{b}, \ \gamma = -\frac{d}{c}$
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ$\pi: \begin {cases} x = x_0 + p_1 * t_1 + p_2 * t_2 \\ y = y_0 + q_1 * t_1 + q_2 * t_2 \\ z = z_0 + r_1 * t_1 + r_2 * t_2 \end {cases}, \ t_1, t_2 \in \mathbb{R}$
$\overrightarrow{s_1}\{p_1;q_1;r_1\}, \ \overrightarrow{s_2}\{p_2;q_2;r_2\} \parallel \pi, \ A_0(x_0;y_0;z_0) \in \pi$
ΠΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ $P$ - ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ $O(0;0;0)$ Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ $\pi$$ |\overrightarrow{OP}| = p, \ \angle(\overrightarrow{OP}, \overrightarrow{OX}) = \alpha, \ \angle(\overrightarrow{OP}, \overrightarrow{OY}) = \beta, \ \angle(\overrightarrow{OP}, \overrightarrow{OZ}) = \gamma, \ $
$\pi: x \cdot \cos \alpha + y \cdot \cos \beta + z \cdot \cos \gamma = p$
$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked Sage Cells
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked Python Cells
ΠΠΊΡΠΈΠ²ΠΈΡΡΠΉΡΠ΅ ΡΡΠΎΡ ΠΊΠΎΠ΄ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΡΠ±ΡΡ ΡΡΠ΅Π΅ΠΊ Linked R Cells
$\rho(M, \pi) = \frac{|a * x_M + b * y_M + c * z_M + d|}{\sqrt{a^2 + b^2 + c^2}}$
ΠΠ²Π΅ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ$\pi_1: \ a_1 * x + b_1 * y + c_1 * z + d_1 = 0$, $\pi_2: \ a_2 * x + b_2 * y + c_2 * z + d_2 = 0$
$\pi_1 \equiv \pi_2 : \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$
$\pi_1 \parallel \pi_2 : \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$
Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΠΌΠΈ$\rho(\pi_1, \pi_2) = \frac{|d_1 - d_2|}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{|d_1 - d_2|}{\sqrt{a_2^2 + b_2^2 + c_2^2}}$
$\pi_1 \cap \pi_2 : \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \lor \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
$\pi_1 \perp \pi_2 : a_1*a_2 + b_1*b_2 + c_1*c_2 = 0$
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠΈΠΌΠΈΡΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΠΌΠΈ$\cos \angle (\pi_1, \pi_2) : \frac{| a_1*a_2 + b_1*b_2 + c_1*c_2 |} {\sqrt{a_1^2 + b_1^2 + c_1^2} * \sqrt{a_2^2 + b_2^2 + c_2^2}}$
ΠΡΡΠΌΠ°Ρ $l : \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}$ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ $\pi: \ a * x + b * y + c * z + d = 0$$A_0(x_0;y_0;z_0) \in l, \ \overrightarrow{s}\{p;q;r\} \parallel l, \ \overrightarrow{n}\{a;b;c\} \perp \pi$
$1. l \in \pi : a * x_0 + b * y_0 + c * z_0 + d = 0 \land a*p + b*q + c*r = 0$
$2. l \parallel \pi : a * x_0 + b * y_0 + c * z_0 + d \neq 0 \land a*p + b*q + c*r = 0$
Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ Π΅ΠΉ ΠΏΡΡΠΌΠΎΠΉ:$\rho(l, \pi) = \rho(A_0, \pi) = \frac{|a * x_0 + b * y_0 + c * z_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$
$3. l \cap \pi : a*p + b*q + c*r \neq 0; \ l \perp \pi : \frac{a}{p} = \frac{b}{q} = \frac{c}{r}$
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ ΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠ΅ΠΉ Π΅Π΅ ΠΏΡΡΠΌΠΎΠΉ:$\sin \angle (l, \pi) : \frac{| a*p + b*q + c*r |}{\sqrt{a^2 + b^2 + c^2} * \sqrt{p^2 + q^2 + r^2}}$
ΠΡΠΈΠΌΠ΅Ρ ΡΠΈΠΏΠΎΠ²ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ°$\pi : A,B,C \in \pi$
$\pi : \\ (x-x_A)[(y_B-y_A)(z_C-z_A)-(y_C-y_A)(z_B-z_A)]- \\ -(y-y_A)[(x_B-x_A)(z_C-z_A)-(x_C-x_A)(z_B-z_A)]+ \\ +(z-z_A)[(x_B-x_A)(y_C-y_A)-(x_C-x_A)(y_B-y_A)] = 0$
$D: AD=BD \implies D(\frac{x_A+x_B}{2};\frac{y_A+y_B}{2};\frac{z_A+z_B}{2})$
$E: AE=CE \implies E(\frac{x_A+x_C}{2};\frac{y_A+y_C}{2};\frac{z_A+z_C}{2})$
$\overrightarrow{AB}\{x_B-x_A;y_B-y_A;z_B-z_A\},\ \overrightarrow{AC}\{x_C-x_A;y_C-y_A;z_C-z_A\}$
$\pi_1 : \overrightarrow{AB} \perp \pi_1, D \in \pi_1$
$\pi_1 : (x_B-x_A)*(x-\frac{x_A+x_B}{2})+ (y_B-y_A)*(y-\frac{y_A+y_B}{2})+ (z_B-z_A)*(z-\frac{z_A+z_B}{2})=0$
$\pi_2 : \overrightarrow{AC} \perp \pi_2, E \in \pi_2$
$\pi_2 : (x_C-x_A)*(x-\frac{x_A+x_C}{2})+ (y_C-y_A)*(y-\frac{y_A+y_C}{2})+ (z_C-z_A)*(z-\frac{z_A+z_C}{2})=0$
$O \in \pi, \pi_1, \pi_2$